MXB-JESW 重機用ウェアプレート
Cat:自己潤滑性ウェアプレート/ガイドレール
MXB-JESW スケートボードは、2 穴と 4 穴を備えた耐摩耗性の高耐久スケートボードです。規格品ですので、HASCO、DME、MISUMI、STAUBLI、NITTO、PCS、DME-EOC、PUNCH、SLTなどの有名海外ブランドと互換性があります。 この製品は伝統的な錫青銅軸受...
詳細を見るThe geometry of a self-lubricating bushing plays a critical role in its performance, as it affects how the bushing interacts with the surrounding surfaces, the distribution of lubrication, and the efficiency of friction reduction. Here's a detailed look at how different aspects of bushing geometry influence performance in various mechanical systems:
Surface Area and Lubricant Distribution
Larger Contact Area: Bushings with a larger surface contact area can distribute the load over a greater surface, potentially reducing wear and improving the load capacity. A larger contact area also allows for better lubrication retention, as there’s more material to store and release lubricant.
Smaller Contact Area: A smaller contact area may result in higher localized pressure, which could increase wear if the lubrication isn’t sufficient. However, such designs may work better for lower load, high-speed applications where less friction is required.
Radial vs. Thrust Load Bearing
Radial Bushings: For radial applications (e.g., in shafts), the geometry of the bushing, including its inner and outer diameters, determines the amount of lubricant that can be retained and how it is distributed. If the bushing has a smooth surface or spiral grooves, it can enhance the movement of lubricant, improving wear resistance and lowering friction.
Thrust Bushings: These bushings are designed to handle axial loads (forces parallel to the shaft). The geometry, particularly the face area, determines how well the bushing can resist axial loads while maintaining a low coefficient of friction. The material's porosity and thickness are important in ensuring lubrication under thrust conditions.
Pore Structure and Lubricant Release
Porous Geometry: In self-lubricating bushings with porous metals or composite materials, the size, shape, and distribution of the pores directly influence how lubricant is stored and released. Larger pores may hold more lubricant but could leak it out too quickly, whereas smaller pores may retain the lubricant longer, offering better performance in low-velocity or low-load applications.
Sintered vs. Non-Sintered Designs: Sintered bushings, where the pores are formed during manufacturing, have a more uniform lubricant distribution, which leads to more consistent lubrication. Non-sintered designs may have more irregular pore structures that can impact lubricant release efficiency.
Internal and External Profiles
Internal Geometry (Bore Shape): The internal shape of the bushing (whether it's cylindrical, conical, or stepped) affects how evenly the bushing fits around a shaft or other components. A precise fit ensures minimal gap between the bushing and the shaft, improving the distribution of lubrication and reducing the chance of frictional wear.
External Geometry: The external geometry of the bushing, such as flanges or external ribs, can influence its ability to withstand external forces, like radial or axial load. Additionally, external features can help in aligning the bushing properly within its housing, ensuring uniform lubricant distribution and more even wear across the bushing.
Groove Patterns and Lubricant Flow
Grooved or Slotted Bushings: Some self-lubricating bushings incorporate grooves or slots along their surface to facilitate lubricant movement. These grooves help channel lubricant from the internal structure to the surface, improving lubrication at critical points, reducing friction, and extending the life of the bushing.
Helical Grooves: In certain designs, helical or spiral grooves are incorporated to promote the movement of lubricant in a consistent, controlled manner during rotation, helping to maintain a steady lubricant supply even during dynamic operation.

Material Thickness and Lubricant Storage
Thicker Materials: Thicker bushings, especially those with embedded lubrication systems, can store more lubricant, making them ideal for high-load or high-demand applications where lubrication is crucial. These designs allow for longer operational life since the lubricant is more abundant and can be replenished over time.
Thinner Materials: Thinner bushings may have reduced lubricant storage capacity but are lighter and more suitable for low-load or low-speed applications where minimal lubrication is required.
Load Distribution and Deformation
Load Distribution Geometry: The shape and profile of the bushing determine how forces are distributed across the bearing surface. For instance, a bushing with a tapered design might concentrate force at one point, leading to higher localized stress and faster wear. A more uniform geometry, such as a cylindrical bushing, distributes forces more evenly, which can lead to more even wear and longer service life.
Deformation Under Load: The geometry also affects how the bushing deforms under load. A bushing with the correct fit and design will deform in a controlled manner, maintaining proper lubrication coverage. Incorrectly sized bushings, or those with poorly optimized geometry, may deform excessively and lose lubrication effectiveness.
Tolerance and Clearance
Precision Fit: The tolerance between the inner and outer surfaces of the bushing influences the amount of clearance. Too tight a fit can lead to excessive friction, while too much clearance can result in instability and inefficient lubrication distribution. Optimal clearance allows for the necessary lubricant flow and ensures the bushing operates smoothly.
Clearance for Lubricant Flow: The geometry should allow enough clearance for the lubricant to flow between the bushing and the mating surface, but not too much that the lubricant is forced out prematurely. This clearance depends on the material’s ability to store and release lubrication efficiently.
Application-Specific Design
Heavy-Duty Systems: For systems that undergo extreme loads, such as automotive suspension or construction equipment, the geometry of the bushing often includes features to handle higher stress, such as thicker walls, reinforced materials, or external flanges to increase surface area and improve lubrication storage.
Precision Applications: In highly accurate systems like robotics or aerospace, bushings often have highly precise geometries, with very tight tolerances and smooth surfaces to ensure exacting performance and minimal friction.
Temperature and Speed Effects
Thermal Expansion: The geometry of the bushing will change with temperature fluctuations. Self-lubricating bushings with geometry that accommodates thermal expansion will maintain their performance under varying temperatures by maintaining proper fit and lubricant distribution.
Speed Considerations: At higher speeds, the geometry of the bushing might need to be adjusted to prevent excess heat buildup, which could cause lubricant breakdown. Grooves or larger surface areas help dissipate heat and maintain lubricant film integrity.
MXB-JESW スケートボードは、2 穴と 4 穴を備えた耐摩耗性の高耐久スケートボードです。規格品ですので、HASCO、DME、MISUMI、STAUBLI、NITTO、PCS、DME-EOC、PUNCH、SLTなどの有名海外ブランドと互換性があります。 この製品は伝統的な錫青銅軸受...
詳細を見る
MXB-JTLP 自己潤滑耐摩耗プレートは、幅 18mm ~ 68mm、長さ 100mm ~ 220mm の標準品を用意しています。お客様の図面に応じてカスタマイズすることも可能です。強力な耐摩耗性と高い耐荷重性を備えており、さまざまな製造業の機械に適しています。
詳細を見る
MXB-JSOL自己潤滑ガイドレールは、高強度黄銅と黒鉛を組み合わせた自己潤滑性を有するL字案内溝タイプの自己潤滑ガイドレールです。ガイドレールの長さに応じて、適合するネジ穴を2穴タイプ/3穴タイプ/4穴タイプ/5穴タイプに設定できます。最新情報については、営業担当までお問い合わせください。
詳細を見る
MXB-JSP 自己潤滑性耐摩耗プレートは、射出成形機、自動車用プレス金型、タイヤ金型、工場機械 (掘削機など) などに適しており、原料として銅合金を使用し、自己潤滑性を実現するために黒鉛インレイを使用しています。効果、2/3/4/5/6/8/10 ネジ穴直径をお選びいただけます。
詳細を見る
MGB61 NAAMS 標準ガイド ブッシングは、正確でスムーズなガイド用途のための信頼できるソリューションです。このガイド ブッシングは NAAMS 規格を満たすように設計されており、さまざまなシステムへの適合性を保証します。 1. 金型製造業界に適しており、広く使用されています。 ...
詳細を見る
MJGBF オイルフリー射出ガイド ブッシュは、プラスチック射出成形プロセスで使用される部品であり、金型部品の一貫した正確な位置合わせとスムーズな動きを保証することで製造効率をさらに向上させ、高品質の製品をもたらします。 MJGBF ガイド ブッシュは標準コンポーネントであり、直径 12mm ...
詳細を見る
SF-1W鉛フリーベアリングは、国際的な環境保護要件に従ってSF-1X材料に基づいて開発された新製品です。一般機械に広く使用されているほか、特に食品機械、製薬機械、タバコ機械などに最適です。鉛フリー効果は欧州の健康基準を満たしており、オイルフリー潤滑ベアリングの開発の方向性です。
詳細を見る
SF-1Tは、ギヤオイルポンプの高PV値使用条件に合わせて設計された特殊配合品です。この製品には耐疲労性と耐衝撃性という特別な利点があります。適切なオイルポンプ圧力: 16-25Mpa、線速度: 3.5-5m/s。この製品には耐疲労性と耐衝撃性という特別な利点があります。流体潤滑状態ではPV値...
詳細を見る
SF-1P 往復動軸受は、SF-1X 材料の構造に基づいて、往復運動の特別な共通条件に従って設計された新しい配合製品です。パフォーマンスは DD2. と同様です
詳細を見る
FB09G 青銅製固体潤滑軸受は、青銅材を基材とし、表面に固体潤滑剤を埋め込んだ軸受です。母材に伸びの高い銅合金材を使用しているため、極薄の圧延スリーブが得られます。潤滑剤として最適な充填材を添加することにより、自動車のトランスミッションシャフトの耐摩耗スリーブとして使用され、その他の用途でも...
詳細を見る
お問い合わせ