MXB-DX バウンダリーオイルレスベアリング SF-2 ドライプレーンベアリング
Cat:オイルレスベアリング
MXB-DX 境界無給油軸受は、鋼板をベースとし、中央に焼結球状青銅粉末、表面に圧延変性ポリオキシメチレン (POM) を含有し、SF-2 自己潤滑または乾式滑り軸受と同等です。オイルリザーバー。この製品の特徴は、境界潤滑下でのメンテナンスフリーでの長期使用に適していることです。重荷重および低...
詳細を見るThe geometry of a self-lubricating bushing plays a critical role in its performance, as it affects how the bushing interacts with the surrounding surfaces, the distribution of lubrication, and the efficiency of friction reduction. Here's a detailed look at how different aspects of bushing geometry influence performance in various mechanical systems:
Surface Area and Lubricant Distribution
Larger Contact Area: Bushings with a larger surface contact area can distribute the load over a greater surface, potentially reducing wear and improving the load capacity. A larger contact area also allows for better lubrication retention, as there’s more material to store and release lubricant.
Smaller Contact Area: A smaller contact area may result in higher localized pressure, which could increase wear if the lubrication isn’t sufficient. However, such designs may work better for lower load, high-speed applications where less friction is required.
Radial vs. Thrust Load Bearing
Radial Bushings: For radial applications (e.g., in shafts), the geometry of the bushing, including its inner and outer diameters, determines the amount of lubricant that can be retained and how it is distributed. If the bushing has a smooth surface or spiral grooves, it can enhance the movement of lubricant, improving wear resistance and lowering friction.
Thrust Bushings: These bushings are designed to handle axial loads (forces parallel to the shaft). The geometry, particularly the face area, determines how well the bushing can resist axial loads while maintaining a low coefficient of friction. The material's porosity and thickness are important in ensuring lubrication under thrust conditions.
Pore Structure and Lubricant Release
Porous Geometry: In self-lubricating bushings with porous metals or composite materials, the size, shape, and distribution of the pores directly influence how lubricant is stored and released. Larger pores may hold more lubricant but could leak it out too quickly, whereas smaller pores may retain the lubricant longer, offering better performance in low-velocity or low-load applications.
Sintered vs. Non-Sintered Designs: Sintered bushings, where the pores are formed during manufacturing, have a more uniform lubricant distribution, which leads to more consistent lubrication. Non-sintered designs may have more irregular pore structures that can impact lubricant release efficiency.
Internal and External Profiles
Internal Geometry (Bore Shape): The internal shape of the bushing (whether it's cylindrical, conical, or stepped) affects how evenly the bushing fits around a shaft or other components. A precise fit ensures minimal gap between the bushing and the shaft, improving the distribution of lubrication and reducing the chance of frictional wear.
External Geometry: The external geometry of the bushing, such as flanges or external ribs, can influence its ability to withstand external forces, like radial or axial load. Additionally, external features can help in aligning the bushing properly within its housing, ensuring uniform lubricant distribution and more even wear across the bushing.
Groove Patterns and Lubricant Flow
Grooved or Slotted Bushings: Some self-lubricating bushings incorporate grooves or slots along their surface to facilitate lubricant movement. These grooves help channel lubricant from the internal structure to the surface, improving lubrication at critical points, reducing friction, and extending the life of the bushing.
Helical Grooves: In certain designs, helical or spiral grooves are incorporated to promote the movement of lubricant in a consistent, controlled manner during rotation, helping to maintain a steady lubricant supply even during dynamic operation.

Material Thickness and Lubricant Storage
Thicker Materials: Thicker bushings, especially those with embedded lubrication systems, can store more lubricant, making them ideal for high-load or high-demand applications where lubrication is crucial. These designs allow for longer operational life since the lubricant is more abundant and can be replenished over time.
Thinner Materials: Thinner bushings may have reduced lubricant storage capacity but are lighter and more suitable for low-load or low-speed applications where minimal lubrication is required.
Load Distribution and Deformation
Load Distribution Geometry: The shape and profile of the bushing determine how forces are distributed across the bearing surface. For instance, a bushing with a tapered design might concentrate force at one point, leading to higher localized stress and faster wear. A more uniform geometry, such as a cylindrical bushing, distributes forces more evenly, which can lead to more even wear and longer service life.
Deformation Under Load: The geometry also affects how the bushing deforms under load. A bushing with the correct fit and design will deform in a controlled manner, maintaining proper lubrication coverage. Incorrectly sized bushings, or those with poorly optimized geometry, may deform excessively and lose lubrication effectiveness.
Tolerance and Clearance
Precision Fit: The tolerance between the inner and outer surfaces of the bushing influences the amount of clearance. Too tight a fit can lead to excessive friction, while too much clearance can result in instability and inefficient lubrication distribution. Optimal clearance allows for the necessary lubricant flow and ensures the bushing operates smoothly.
Clearance for Lubricant Flow: The geometry should allow enough clearance for the lubricant to flow between the bushing and the mating surface, but not too much that the lubricant is forced out prematurely. This clearance depends on the material’s ability to store and release lubrication efficiently.
Application-Specific Design
Heavy-Duty Systems: For systems that undergo extreme loads, such as automotive suspension or construction equipment, the geometry of the bushing often includes features to handle higher stress, such as thicker walls, reinforced materials, or external flanges to increase surface area and improve lubrication storage.
Precision Applications: In highly accurate systems like robotics or aerospace, bushings often have highly precise geometries, with very tight tolerances and smooth surfaces to ensure exacting performance and minimal friction.
Temperature and Speed Effects
Thermal Expansion: The geometry of the bushing will change with temperature fluctuations. Self-lubricating bushings with geometry that accommodates thermal expansion will maintain their performance under varying temperatures by maintaining proper fit and lubricant distribution.
Speed Considerations: At higher speeds, the geometry of the bushing might need to be adjusted to prevent excess heat buildup, which could cause lubricant breakdown. Grooves or larger surface areas help dissipate heat and maintain lubricant film integrity.
MXB-DX 境界無給油軸受は、鋼板をベースとし、中央に焼結球状青銅粉末、表面に圧延変性ポリオキシメチレン (POM) を含有し、SF-2 自己潤滑または乾式滑り軸受と同等です。オイルリザーバー。この製品の特徴は、境界潤滑下でのメンテナンスフリーでの長期使用に適していることです。重荷重および低...
詳細を見る
MXB-FB090 ブロンズコイルベアリングは、CuSn8 ブロンズから圧延された高負荷容量と優れた耐摩耗性を備えた経済的なベアリングです。 FB090製品の作動面には規則的な菱形の油穴が施されています。 FB092製品の作動面には規則的な油穴が設けられており、油溜まりの役割を果たします。初期...
詳細を見る
鉱山機械で使用される機器は、深刻な磨耗や損傷を受ける可能性があります。機器の耐用年数を延ばすために、MXB-JTSW 耐摩耗鋼板がよく使用され、ライニングを作成して損傷した機械を保護し、機器の磨耗を遅らせ、機器の耐用年数を延ばします。鉱山機械では、装置のライニング プレートとして MXB-JT...
詳細を見る
MXB-JOML 自己潤滑摩耗プレートは、産業用途での摩擦を最小限に抑え、耐用年数を延ばすように設計されています。この製品は高性能材料の切削ブレンドで作られており、優れた耐荷重能力、摩擦の軽減、耐久性の向上を実現しています。 MXB-JOML 摩耗プレートは、荷重下で優れた耐摩耗性を提供し、自...
詳細を見る
MXB-JTGLW 自己潤滑ガイド レールは、抵抗を提供して摩擦を軽減し、耐久性の向上とパフォーマンスの向上を保証します。この製品には、パラメータ表に 13 種類の標準モデルが用意されており、選択することができ、顧客の図面やサンプルに従ってカスタマイズすることができます。同様のニーズがある場合...
詳細を見る
MXB-JGLXS ガイドレールは、サイドコア抜きスライダーを一定の軌道で前後移動させるために、サイドコア抜きスライダーの両側に設置される部品です。同じ側のコア抜きスライダは面接触となるため、良好な加工精度と面粗さが要求されます。 ■ガイドレール材質:銅合金CAC304(特殊固定潤滑...
詳細を見る
MXB-JSOL自己潤滑ガイドレールは、高強度黄銅と黒鉛を組み合わせた自己潤滑性を有するL字案内溝タイプの自己潤滑ガイドレールです。ガイドレールの長さに応じて、適合するネジ穴を2穴タイプ/3穴タイプ/4穴タイプ/5穴タイプに設定できます。最新情報については、営業担当までお問い合わせください。
詳細を見る
MX2000-2 ニッケルグラファイト分散合金軸受は固体潤滑軸受の新製品です。 TF-1に比べて錆びにくく、高温にも強いという特徴があります。屋外で使用される鉄道の開閉器スライダーに最適です。耐摩耗性があり、メンテナンスが必要です。自動車金型スライダー、高速パンチガイド、高温冶金装置での使用に...
詳細を見る
SF-1D油圧軸受はSF-1Pをベースに設計され、オイルシリンダとショックアブソーバの動作原理を組み合わせた新しいタイプの油圧軸受です。オイルフリーの状態ではより耐摩耗性が高くなります。 SF-1Pの利点に加えて、この製品は、頻繁な往復運動や大きな横力がかかる場面に特に適しています。性能は海外...
詳細を見る
SF-2S 無給油潤滑軸受は、SF-2 の改良品で、鋼製のバックマトリックス、中間に球状の錫青銅粉末を焼結させ、表面にアセタール樹脂と親油性繊維と特殊潤滑剤を含む高分子材料を圧延したものです。海外の同製品はDSベアリングで、常温下での乾式摩擦や低給油に適しています。摩擦係数が低く、耐摩耗性に優...
詳細を見る
お問い合わせ